ChatLiteLLM
LiteLLM is a library that simplifies calling Anthropic, Azure, Huggingface, Replicate, etc.
This notebook covers how to get started with using Langchain + the LiteLLM I/O library.
from langchain_community.chat_models import ChatLiteLLM
from langchain_core.messages import HumanMessage
API Reference:HumanMessage
chat = ChatLiteLLM(model="gpt-3.5-turbo")
messages = [
HumanMessage(
content="Translate this sentence from English to French. I love programming."
)
]
chat(messages)
AIMessage(content=" J'aime la programmation.", additional_kwargs={}, example=False)
ChatLiteLLM
also supports async and streaming functionality:
from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler
API Reference:CallbackManager | StreamingStdOutCallbackHandler
await chat.agenerate([messages])
LLMResult(generations=[[ChatGeneration(text=" J'aime programmer.", generation_info=None, message=AIMessage(content=" J'aime programmer.", additional_kwargs={}, example=False))]], llm_output={}, run=[RunInfo(run_id=UUID('8cc8fb68-1c35-439c-96a0-695036a93652'))])
chat = ChatLiteLLM(
streaming=True,
verbose=True,
callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),
)
chat(messages)
J'aime la programmation.
AIMessage(content=" J'aime la programmation.", additional_kwargs={}, example=False)
Related
- Chat model conceptual guide
- Chat model how-to guides